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THEORETICAL INVESTIGATION OF BIREFRINGENCE-
DEFORMATION RELATIONS IN PHOTO-ELASTO-PLASTICITY

Tatsuo TOKUOKA

Department of Aeronautical Engineering, Kyoto University, Japan

Abstract—The general birefringent relations for elasto-plastic deformation are established theoretically. A
proposition is advanced which assumes that the dielectric constants of a polymer solid depend upon elastic
and plastic strain. From the coincidence of principal axes of the index ellipsoid and the pseudo-strain quadric,
the directions of polarization of a given wave-vector are determined. The velocities of the polarized wave and
the birefringent effects in photo-elasto-plasticity are specified by the secondary principal pseudo-strains.
Within the elastic limit, the general formula obtained is reduced to the well-known formula of photo-elasticity.
In the case when the principal axes of elastic and plastic strain are identical, our general formula is reduced
to the one proposed by Filon and Jessop [1], Bayoumi and Frankl [3], and Fujii and Tokuoka [4].

1. INTRODUCTION

THERE have been reported several theoretical investigations concerning the birefringent
properties of polymer solids beyond the elastic limit. Filon and Jessop [1] showed that
in xylonite and celluloid the relative retardation per unit thickness is expressed as a linear
combination of stress and strain, and this formula was verified theoretically by Coker
and Filon [2] for a two-phase material. Bayoumi and Frankl [3], and Fujii and Tokuoka
[4] proposed the same type of formula. The former were lead to it by experimental results
using the material Catalin 800, and the latter deduced it on the basis of three propositions
and verified experimentally its validity for celluloid. But all the above investigations have
to be regarded as semi-empirical and especially the directions of the plane of polarization
were not properly taken into consideration,

In this paper, a qualitative proposition is introduced from the microscopic point of
view and from that general formulas are deduced theoretically ; in particular, the directions
of plane polarization of a given wave-vector for the elasto-plastic deformation region are
determined.

2. PROPOSITION

The birefringent properties of a non-magnetic transparent material depend entirely
upon its dielectric constants for an observing wave-frequency [5, 6].

When an optically isotropic polymer solid, whose temperature is less than its second-
order transition point, is deformed, intermolecular changes of angle and distance and the
orientations of the molecular chain arise. These variations have their proper dielectric
characteristics and produce an optical anisotropy of the material. The dielectric con-
stants may be considered as the macroscopic mean effects of these variations.

On the other hand, the deformation of a polymer solid is the macroscopic result of the
accumulation of these geometrical changes of the molecules. Then, as Neumann [7]
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proposed, the dielectric constants may be assumed as functions of the deformation state
of the material, i.e. elastic and plastic strain.

Now we suppose that the deviation of the dielectric constants from its undeformed
natural state is relatively smail and the dielectric cross-effect of elastic and plastic strain
is negligible in the first approximation. Then elastic and plastic strain may be the inde-
pendent variables for the dielectric constants.

From the above considerations, we deduce the following conclusion.

Proposition: The dielectric constants of a polymer solid depend upon elastic and plastic
strain of the material.

3. BIREFRINGENCE-DEFORMATION RELATIONS

When a polymer solid is deformed, the polymer becomes an anisotropic dielectric
for an observing wave-frequency and the electric induction D{i = 1, 2, 3) may be expressed
linearly by the electric field E(i = 1,2, 3) as

Di = 8E (l = 19 29 3)9 (1)

¥ )

where the coefficients ¢;(i,j = 1,2, 3) are the dielectric constants of the material and in the
above and following expressions repeated indices indicate summation over the range
(1,2,3)

We now take the inverse transformation of (1) and write this solution as

El' = r’UD (l = 1, 2, 3), (2)

where #;; is an (i, j) element of the inverse matrix of (g;).
The symmetry conditions

i

and i = Nji (i,j=1,273) (3)

follow from the requirement that the work done per unit volume in creating a field must
be a total differential.

The dielectric constant and the magnetic permeability of vacuum are both unity in
the system of Gaussian units and, as for all transparent materials, the magnetic permeability
of the given material is assumed to be unity for all states of deformation.

From our proposition introduced in Section 2, the dielectric constants ¢;; and thus also
the coefficients 7;; are functions of the elastic strains ef; and the plastic strains ¢} such that

i = Nobij+ntlen) +nlted),  (.j=1,23) (@)

in the first approximation, where n, is the reciprocal of the dielectric constant &, of the
undeformed natural isotropic state of the material and

o = (vo/c)* = (ng) ™%, (3)

where v, and ¢ are the ray velocity penetrating into the undeformed material and the
velocity in vacuum, respectively, and n, is the index of refraction in this state; The symbol
d.;, the Kronecker delta, is defined to have the value one if i equals j, zero if i differs from j.

The birefringent properties of a dielectric are completely determined by Fresnel’s
ellipsoid

€ij = &ji

ijs

Sijxixj' =1 (6)



Theoretical investigation of birefringence-deformation relations in photo-elasto-plasticity 345

or the index ellipsoid

The directions of polarization are parallel to the axes of the diametral cross-section being
parallel to the wave-front of the index ellipsoid (7), and the index of refraction for a plane
polarized wave is the length of the semi-axis perpendicular to itself {5, 6].

Now we consider the elastic index ellipsoid

nExx; = constant (8)
and the elastic strain quadric
erx;x; = constant. 9)

The coefficients rf; depend only on the elastic strains ef;, and thus, according to Neumann
[7], it must follow that the two quadrics (8) and (9), from considerations of symmetry,
have the same principal axes. Taking these axes as coordinate axes, the equations of these
quadrics become

nEx? = constant (10)

and
efx? = constant, (11)

where ef(i = 1,2, 3) are the principal elastic strains.
Then we must have

ni =[5l €3, €5)
and, by symmetry, (12

’75 =fE(e§’ eg’ ellz)’

13 =f¥e3, ef, €3),
where [ is some function which vanishes when ef = ¢£ = e£ = 0 and, owing to the sym-
metry of the two quadrics (10) and (11) about the principal axes, f£ is necessarily a sym-
metric function of its second and third variables.

Expanding (12) into a Taylor series and neglecting second and higher order terms of
strain, we obtain

nE = afef + BEE, i=1,273), (13)
where
e (¥, o) o
* = ( & Jooo
(14)
BE = <6fE(§’ ’1’ C)) — <afE(€, r’s C))
on 0,0,0 o¢ 0.0,0

and ef = % + €% + ¢k is the first elastic strain invariant.
By means of an orthogonal transformation from the coordinate system of the principal
axes of the quadrics to the original coordinate system, we have
n = afef+ pEefs,; (,j=1,2,3). (15)

ij*
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In the same way, we have the following relations with respect to the plastic part
= afef,+Bre"s,;,  (ij=1,2,3), (16)

where e’ = ef +e§+ €f is the first plastic strain invariant. (In general the two systems of the
principal axes of elastic and plastic strain quadric differ from each other, nevertheless,
we can obtain the relations (15) and (16) by the transformations to the original coordinate
system.)

Combining (15), (16) and (4), we have

ni; = r’oéij+aEeij+.BEe**5ijs (i,j=1,23), (17)
where \
ef = ef+oef, (i,j=123) (18)
may be called pseudo-strains and
e** = ef + pef, (19)
while
(XP BP
a=-F and p= 5 (20

are specified for a given material and the observing wave-frequency.
Relation (17) indicates that the index ellipsoid (7) and the pseudo-strain quadric

efxx; = +1 (21)

have the same principal axes, where the sign is chosen so as to make the surface real.
Taking these axes as coordinate axes, relation (17) is then reduced to

= r’0+aEe=|'k +BEe**a (l = 15 2a 3)5 (22)

where ¢}(i = 1,2, 3) are the principal pseudo-strains.
Let us consider the sections of the index ellipsoid and the pseudo-strain quadric
defined by the diametral plane

kix,- = 0 (23)

perpendicular to the wave-vector Kk, i.e. parallel to the wave-front.

If we choose the x;-axis as the direction of the wave-vector in the quadric equations
(7) and (21), generality is not lost. Then the equations of the intersectional curve are
expressed as

N11X7+ 20 12X, X, +12,X5 = 1 (24)
and
e* x3+2e¥,x,x,+e¥,x3 = +£1. (25)

Thus the angles between the principal axes of the intersectional curves of second
degree, being designated as the secondary principal axes, and the x,-axis are specified,
respectively, as

245 2et,
_— and tan 262‘ =

tan 26, = —
Hi1—HNa22 €11 €22

(26)
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Considering (26) and (17), we may conclude that the secondary principal axes of the two
sections have the same directions.

Rotating the coordinate axes to the same secondary principal axes, which are denoted
by x, {x = 1,2), the curves of second degree are represented by

nxE+n2x3 =1 27)
and
eFEXE+eFx}

1, (28)

while the coefficients #, and the secondary principal pseudo-strains e *(o = 1,2) are
equal to

My = %{'lu""lzzi\/[(’hl“’722)2+4’1%2]} (29)
and

e, e = et +ed, k. /[(ef —ef)) +detil). | (30)

Substituting relation (17) into (29) and considering (30), we obtain
M = Not+afe+fPe**,  (x=1,2). (31)

These secondary principal axes are parallel to the directions of polarization at this
wave-front.
Let us denote by vi(x = 1, 2) the velocities of the wave polarized along the x,-axis,
such that
v =¢c%ny, and  0F =y (32)
By means of (31) and (32), we obtain
vE = v5+ ol + fEe**),
v} = vi+c*(afe + pre*).

(33)

Taking square roots in (33) and neglecting squares of strain, we have

vy = vo+peyt +qe*t*,
P (34)

Uy, = Uo+pe’1* + qe**,
where
E

2
and g = gﬂE
0

I

c? .
b 2v,
Then the relative retardation of the wave having the given wave-vector is
r=vi—v; = plef—ey) (35)
and the fringe-order per unit thickness is expressed approximately by
1 1 , ,
N =o|-——]= Ale*—e3), (36)
W1 U2

where @ is the observing wave-frequency and A = (w/vd)p is a pseudo-strain-optical
coeflicient specified for a given material and given wave-frequency.
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From the above developments, we can conclude the following two laws:

(1) The directions of polarization at any given wave-front are parallel to the direc-
tions of secondary principal pseudo-strain at that wave-front, that is, to the principal
axes of the section of the pseudo-strain quadric defined by a plane parallel to the wave-
front.

(2) The relative retardation and the fringe-order per unit thickness of the two op-
positely polarized waves which have the same wave-front are proportional to the difference
of the principal pseudo-strains in the plane of the wave-front.

4. SPECIAL CASES

4.1. The case of the deformation state within the elastic limit

In this case the plastic strains vanish. Then the pseudo-strains ef, coincide with the
total strains e;; and e** with the first invariant of the total strain e = ¢;. Then the pseudo-
strain quadric is reduced to the strain quadric.

The velocities of the polarized wave are thus equal to

v? = v§+ c*(ofey + BEe), an
v? = v§+c*(afe) + Be)
in spite of (34), where the directions of polarization of a given wave coincide with the
secondary principal axes of the section of the strain quadric defined by a plane parallel
to the wave-front and e,(x = 1, 2) are the secondary principal strains at the wave-front.

Further, the relative retardation of the wave and the fringe-order per unit thickness

are expressed by

r=vy—vy = plez—¢)) (38)
and
N = Ale;—¢3) (39)
respectively.

Equations (37)~(39) are Neumann’s relations [7].

If the given elastic body is a mechanically homogeneous isotropic medium, the stress—
strain relations are of the form [8]

¢ =———="—0+—0;;,
Yoo 2u(BA+2u) 0 2u Y
where A and u are the Lamé constants; o,(i,j = 1,2, 3) are the stress components and
o = 0y; is the first stress invariant.

In this case, the secondary principal axes of the strain quadric coincide with that of
the stress quadric and

(i,j=1,23), (40)

e1—e; = 5-(0y—0)), (41)

where o(¢ = 1, 2) are the secondary principal stresses.
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The fringe-order per unit thickness is then proportional to the secondary principal
stress difference at the wave-front such that

N = C(o', —67), (42)

where C = A/2p.

Equation (42) is the well-known “stress-optical law” in photo-elasticity.

Thus our general formula includes the formula (42) as a special case of the deformation
state within the elastic limit.

4.2. The case of the deformation state, in which the principal axes of elastic and plastic
strain are identical and the wave-vector is proportional to one of these axes.

In this case, the three systems of the principal axes of the index ellipsoid, and of the
elastic and plastic strain quadric are identical and thus the secondary principal axes of
the section of the index ellipsoid coincide with those of elastic and plastic strain quadric.

Therefore the expression for the fringe-order per unit thickness is reduced to

N = Alef—ey)+ Blel —e5), (43)

where e/f and ¢f(x = 1,2) are the secondary principal elastic and plastic strains, respec-
tively, and B = aA.

If, further, the secondary principal elastic strain difference is assumed to be propor-
tional to the secondary principal stress difference, as for a Prandtl-Reuss body, we have

’ ! 1 ’ !
ef—ef = Z(Graz)- (44)
Then (43) takes on the form
N = Cy(0)—03)+ Cyley —e3), (45)
where
A—B
e.=ef+ef (=12, and C, = i and C,=B
U

are the stress-optical and the strain-optical coefficient, respectively.

Equation (45) is precisely the formula proposed by Filon and Jessop, Bayoumi and
Frankl, and Fujii and Tokuoka.

Thus we can conclude that the birefringent effect is expressed as a linear combination
of stress and strain if the principal axes of elastic and plastic strain are identical and the
wave-vector is proportional to one of these axes.
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Zusammenfassung—Es werden die allgemeinen Beziehungen der Doppelbrechung bei der elastoplastischen
Forminderung theoretisch gegeben. Ein Ansatz wird vorgeschlagen, wonach sich die Dielektrizitdtskonstanten
eines polymeren, festen Kdrpers von den elastischen und plastischen Forménderungen abhingen. Auf Grund
des Zusammenfallens der Hauptachsen des Indexellipsoides und der Pseudoverzerrungsfliche, werden die
Richtungen des polarisierten Lichtes eines gegebenen Wellenvektors bestimmt. Die Geschwindigkeiten des
polarisierten Lichtes, sowie die spannungsoptischen Effekte bei der Photoelastoplastizitat sind durch die
sekunddren Hauptpseudoverzerrungen gegeben. Fiir den Fall innerhalb der Elastizititsgrenze, wird die
aufgestellte aligemeine Formel auf die bekannte Formel der Photoelastizitat zurtickgefiihrt. Der Fall, wo die
Hauptachsen der elastischen und plastischen Forminderung identisch sind, fiihrt auf die Formel die von
Filon und Jessop [1], Bayoumi und Frankl [3], und Fujii und Tokuoka [4] vorgeschlagen wurde.

AGCTpaKT—YCTaHOBJICHBl TEOPETHYECKH OOILHE OTHOIUEHHS NBOMHOIO JIyYenpelOMIEHHA AN YNpyro-
niacTugHOM Jaedopmaumu. ChenaHo NPEANnoOSIOKEHHE, 4TO [AUAIEKTPHYECKHE IOCTOSHHBIE TBEPAOIO
[OJIMMEpA 3aBUCAT OT YNPYroil u rmactuieckoit aedopmaumn. OnpesneneHsl HAPABIECHHS NMOJSAPH3ALMH
JAaHHO# BOHBI-BEKTOPA H3 COBNAJEHMH TIaBHbIX OCel KBAAPHKH MHIAEKCA H KBAAPHKH NCEBROAEHOPMALIHE.
CKOPOCTH NOJIAPM30BAHHON BONHLL H 3G(gEKT NBOMHOIO NPENIOMIIEHHS AETANIHM3UPYIOTCA B (HOTO-ynpyro-
IJIACTHMHOM cpene BTOPHYHBIMU INIaBHBIMH IiceBIoaehopMansaMi. B npenenax ynpyrocTd BblBeleHHas
ofmasn dopMyia MPUBOAMTCH K XOpOIlo H3BecTHOH# dopmyne poro-ynpyrocTu. B crnyvae, xoraa riaBHbie
OCH YIPYroi M IutacTu4eckoi aedopManuu MOEHTUYHBI, Haa obwas GopMyna NpHBOAKTCH K dopmyne,
npeanoxenHo# rpymmamu: ®unon u Ixeccon [1], Baitymu u ®pankn [3], u ®ynxu u Tokyoxa [4].



