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THEORETICAL INVESTIGATION OF BIREFRINGENCE­
DEFORMATION RELATIONS IN PHOTO-ELASTO-PLASTICITY

TATSUO TOKUOKA

Department of Aeronautical Engineering, Kyoto University, Japan

Abstract~The general birefringent relations for elasto-plastic deformation are established theoretically. A
proposition is advanced which assumes that the dielectric constants of a polymer solid depend upon elastic
and plastic strain. From the coincidence of principal axes of the index ellipsoid and the pseudo-strain quadric.
the directions of polarization of a given wave-vector are determined. The velocities of the polarized wave and
the birefringent effects in photo-elasto-plasticity are specified by the secondary principal pseudo-strains.
Within the elastic limit, the general formula obtained is reduced to the well-known formula of photo-elasticity.
In the case when the principal axes of elastic and plastic strain are identical, our general formula is reduced
to the one proposed by Filon and Jessop [1], Bayoumi and Frankl [3], and Fujii and Tokuoka [4].

1. INTRODUCTION

THERE have been reported several theoretical investigations concerning the birefringent
properties of polymer solids beyond the elastic limit. Filon and Jessop [1] showed that
in xylonite and celluloid the relative retardation per unit thickness is expressed as a linear
combination of stress and strain, and this formula was verified theoretically by Coker
and Filon [2] for a two-phase materiaL Bayoumi and Frankl [3], and Fujii and Tokuoka
[4] proposed the same type of formula. The former were lead to it by experimental results
using the material Catalin 800, and the latter deduced it on the basis of three propositions
and verified experimentally its validity for celluloid. But all the above investigations have
to be regarded as semi-empirical and especially the directions of the plane of polarization
were not properly taken into consideration.

In this paper, a qualitative proposition is introduced from the microscopic point of
view and from that general formulas are deduced theoretically; in particular, the directions
of plane polarization of a given wave-vector for the elasto-plastic deformation region are
determined.

2. PROPOSITION

The birefringent properties of a non-magnetic transparent material depend entirely
upon its dielectric constants for an observing wave-frequency [5,6].

When an optically isotropic polymer solid, whose temperature is less than its second­
order transition point, is deformed, intermolecular changes of angle and distance and the
orientations of the molecular chain arise. These variations have their proper dielectric
characteristics and produce an optical anisotropy of the materiaL The dielectric con­
stants may be considered as the macroscopic mean effects of these variations.

On the other hand, the deformation of a polymer solid is the macroscopic result of the
accumulation of these geometrical changes of the molecules. Then, as Neumann (7]
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proposed, the dielectric constants may be assumed as functions of the deformation state
of the material, i.e. elastic and plastic strain.

Now we suppose that the deviation of the dielectric constants from its undeformed
natural state is relatively small and the dielectric cross-effect of elastic and plastic strain
is negligible in the first approximation. Then elastic and plastic strain may be the inde­
pendent variables for the dielectric constants.

From the above considerations, we deduce the following conclusion.

Proposition: The dielectric constants of a polymer solid depend upon elastic and plastic
strain of the material.

3. BIREFRINGENCE-DEFORMATION RELATIONS

When a polymer solid is deformed, the polymer becomes an anisotropic dielectric
for an observing wave-frequency and the electric induction Di(i = 1,2,3) may be expressed
linearly by the electric field Ei(i = 1,2,3) as

(i = 1,2,3), (1)

where the coefficients cij(i,j = 1,2,3) are the dielectric constants of the material and in the
above and following expressions repeated indices indicate summation over the range
(1,2,3).

We now take the inverse transformation of (1) and write this solution as

(i = 1,2,3), (2)

where '1ij is an (i,j) element of the inverse matrix of (cij).
The symmetry conditions

and '1ij = '1ji (i,j = 1,2,3) (3)

follow from the requirement that the work done per unit volume in creating a field must
be a total differential.

The dielectric constant and the magnetic permeability of vacuum are both unity in
the system of Gaussian units and, as for all transparent materials, the magnetic permeability
of the given material is assumed to be unity for all states of deformation.

From our proposition introduced in Section 2, the dielectric constants C,j and thus also
the coefficients '1ij are functions of the elastic strains e5 and the plastic strains e~ such that

'1ij = '1obij+'15{ef')+'1~(efl)' (i,j = 1,2,3) (4)

in the first approximation, where '10 is the reciprocal of the dielectric constant Co of the
undeformed natural isotropic state of the material and

(5)

where Vo and c are the ray velocity penetrating into the undeformed material and the
velocity in vacuum, respectively, and no is the index of refraction in this state; The symbol
0ij' the Kronecker delta, is defined to have the value one if i equalsj, zero if i differs fromj.

The birefringent properties of a dielectric are completely determined by Fresnel's
ellipsoid

(6)
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or the index ellipsoid
(7)

The directions of polarization are parallel to the axes of the diametral cross-section being
parallel to the wave-front of the index ellipsoid (7), and the index of refraction for a plane
polarized wave is the length of the semi-axis perpendicular to itself [5,6].

Now we consider the elastic index ellipsoid

and the elastic strain quadric

ef;x;xj = constant.

(8)

(9)

The coefficients 'If; depend only on the elastic strains ef;, and thus, according to Neumann
[7], it must follow that the two quadrics (8) and (9), from considerations of symmetry,
have the same principal axes. Taking these axes as coordinate axes, the equations of these
quadrics become

'Ifx[ = constant

and

efx[ = constant,

where ef(i = 1,2,3) are the principal elastic strains.
Then we must have

and, by symmetry,

(10)

(11)

(12)

wherefE is some function which vanishes when ef = e~ = e~ = 0 and, owing to the sym­
metry of the two quadrics (10) and (11) about the principal axes,fE is necessarily a sym­
metric function of its second and third variables.

Expanding (12) into a Taylor series and neglecting second and higher order terms of
strain, we obtain

where

(i = 1,2,3), (13)

(14)

and eE == ef+e~+e~ is the first elastic strain invariant.
By means of an orthogonal transformation from the coordinate system of the principal

axes of the quadrics to the original coordinate system, we have

(i,j = 1,2,3). (15)
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In the same way, we have the following relations with respect to the plastic part

P P P f3P P~
1'fij = IX e ij + e Uij' (i,j = 1,2,3), (16)

where e
P == ef+e~+e~ is the first plastic strain invariant. (In general the two systems of the

principal axes of elastic and plastic strain quadric differ from each other, nevertheless,
we can obtain the relations (15) and (16) by the transformations to the original coordinate
system.)

Combining (15), (16) and (4), we have

where

- ~ + E *+ f3E ** ~1'fij - 1'fOUij IX eij e Uij' (i,j = 1,2,3), (17)

(i,j = 1,2,3) (18)

may be called pseudo-strains and

while

(19)

and (20)

are specified for a given material and the observing wave-frequency.
Relation (17) indicates that the index ellipsoid (7) and the pseudo-strain quadric

(21 )

have the same principal axes, where the sign is chosen so as to make the surface real.
Taking these axes as coordinate axes, relation (17) is then reduced to

(i = 1,2,3), (22)

where er(i = 1,2,3) are the principal pseudo-strains.
Let us consider the sections of the index ellipsoid and the pseudo-strain quadric

defined by the diametral plane

kixi = 0 (23)

perpendicular to the wave-vector k, i.e. parallel to the wave-front.
If we choose the x3-axis as the direction of the wave-vector in the quadric equations

(7) and (21), generality is not lost. Then the equations of the intersectional curve are
expressed as

(24)

and

(25)

Thus the angles between the principal axes of the intersectional curves of second
degree, being designated as the secondary principal axes, and the x I-axis are specified,
respectively, as

and
2eL

tan 2ee _ = * *
ell -e2 2

(26)
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Considering (26) and (17), we may conclude that the secondary principal axes of the two
sections have the same directions.

Rotating the coordinate axes to the same secondary principal axes, which are denoted
by x" (a = 1,2), the curves of second degree are represented by

(27)

and
e'tx'l + e~*x~z = ± 1, (28)

while the coefficients '1~ and the secondary principal pseudo-strains e~*(a 1,2) are
equal to

and

'* ,* _ 1{ * + * + 1[( * * )2 +4 *2]}e1 , e2 -"2 ell ezz _'\I en -ezz etZ·

Substituting relation (17) into (29) and considering (30), we obtain

(30)

(a = 1,2). (31)

These secondary principal axes are parallel to the directions of polarization at this
wave-front.

Let us denote by v~(a = 1,2) the velocities of the wave polarized along the x~-axis,

such that

and (32)

By means of (31) and (32), we obtain

v'l = v§+c2(aEe~*+pEe**), ]

V~2 = v§ + c2(aEe'i'" + pEe**).

Taking square roots in (33) and neglecting squares of strain, we have

(33)

where

V'1 = vo+pe~*+qe**,

v~ = vO+pe'I*+qe**, ] (34)

CZ CZ
P == _'_aE and q == _pE.

2vo 2vo

Then the relative retardation of the wave having the given wave-vector is

r = v~ - v~ = p(e~* -e'l) (35)

and the fringe-order per unit thickness is expressed approximately by

N = w(~-~) = A(e~*-e~*), (36)
,VI v2

where w is the observing wave-frequency and A == (wjv6)P is a pseudo-strain-optical
coefficient specified for a given material and given wave-frequency.
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From the above developments, we can conclude the following two laws:

(1) The directions of polarization at any given wave-front are parallel to the direc­
tions of secondary principal pseudo-strain at that wave-front, that is, to the principal
axes of the section of the pseudo-strain quadric defined by a plane parallel to the wave­
front.

(2) The relative retardation and the fringe-order per unit thickness of the two op­
positely polarized waves which have the same wave-front are proportional to the difference
of the principal pseudo-strains in the plane of the wave-front.

4. SPECIAL CASES

4.1. The case of the deformation state within the elastic limit

In this case the plastic strains vanish. Then the pseudo-strains e1j coincide with the
total strains eij and e** with the first invariant of the total strain e == eii' Then the pseudo­
strain quadric is reduced to the strain quadric.

The velocities of the polarized wave are thus equal to

v'? = vii + c2(aEe~ + pEe), )
(37)

V~2 = vii +c2(aEe'l +pEe)

in spite of (34), where the directions of polarization of a given wave coincide with the
secondary principal axes of the section of the strain quadric defined by a plane parallel
to the wave-front and e~(a = 1,2) are the secondary principal strains at the wave-front.

Further, the relative retardation of the wave and the fringe-order per unit thickness
are expressed by

(38)

and

(39)

(40)(i,j = 1,2,3),

respectively.
Equations (37)-(39) are Neumann's relations [7].

If the given elastic body is a mechanically homogeneous isotropic medium, the stress­
strain relations are of the form [8]

- AtJ ij

where A and J1 are the Lame constants; (Jiii,j = 1,2,3) are the stress components and
(J == (Jii is the first stress invariant.

In this case, the secondary principal axes of the strain quadric coincide with that of
the stress quadric and

(41)

where (J~(a = 1,2) are the secondary principal stresses.
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The fringe-order per unit thickness is then proportional to the secondary principal
stress difference at the wave-front such that

(42)

where C == AI2f/..
Equation (42) is the well-known "stress-optical law" in photo-elasticity.
Thus our general formula includes the formula (42) as a special case of the deformation

state within the elastic limit.

4.2. The case of the deformation state, in which the principal axes of elastic and plastic
strain are identical and the wave-vector is proportional to one of these axes.

In this case, the three systems of the principal axes of the index ellipsoid, and of the
elastic and plastic strain quadric are identical and thus the secondary principal axes of
the section of the index ellipsoid coincide with those of elastic and plastic strain quadric.

Therefore the expression for the fringe-order per unit thickness is reduced to

N = A(et-e~E)+B(e'f -e'J), (43)

where e~E and e~P(rx = 1,2) are the secondary principal elastic and plastic strains, respec­
tively, and B == rxA.

If, further, the secondary principal elastic strain difference is assumed to be propor­
tional to the secondary principal stress difference, as for a Prandtl-Reuss body, we have

(44)

Then (43) takes on the form

(45)

where

andand
A-B

C 1 ==-­
2f/.

are the stress-optical and the strain-optical coefficient, respectively.
Equation (45) is precisely the formula proposed by Filon and Jessop, Bayoumi and

Frankl, and Fujii and Tokuoka.
Thus we can conclude that the birefringent effect is expressed as a linear combination

of stress and strain if the principal axes of elastic and plastic strain are identical and the
wave-vector is proportional to one of these axes.
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Zusammenfassung-Es werden die allgemeinen Beziehungen der Doppelbrechung bei der elastoplastischen
Formiinderung theoretisch gegeben. Ein Ansatz wird vorgeschlagen, wonach sich die Dielektrizitiitskonstanten
eines polymeren, festen Korpers von den elastischen und plastischen Formiinderungen abhiingen. Auf Grund
des Zusammenfallens der Hauptachsen des Indexellipsoides und der Pseudoverzerrungsfliiche, werden die
Richtungen des polarisierten Lichtes eines gegebenen Wellenvektors bestimmt. Die Geschwindigkeiten des
polarisierten Lichtes, sowie die spannungsoptischen Effekte bei der Photoelastoplastizitiit sind durch die
sekundiiren Hauptpseudoverzerrungen gegeben. Flir den Fall innerhalb der Elastizitiitsgrenze, wird die
aufgestellte allgemeine Formel auf die bekannte Formel der Photoelastizitiit zurlickgeflihrt. Der Fall, wo die
Hauptachsen der elastischen und plastischen Formiinderung identisch sind, fiihrt auf die Formel die von
Filon und Jessop [I], Bayoumi und Frankl [3], und Fujii und Tokuoka [4] vorgeschlagen wurde.

AOCTp8KT-YcTaHOBJIeHbI TeOpeTH'IecKH 06LQHe OTHOIlleHHlI ABoliHoro JlY'lenpeJlOMJleHHlI AJlll ynpyro­
nJlaCTH'IHOli Aecj>opMaI.\HH. CAeJlaHO npeAnOJlOlKeHHe, 'ITO AH3JleKTpH'IecKHe nocTOllHHble TBePAOrO
nOJlHMepa 3aBHcliT OT ynpyroll H nJIaCTH'IecKoli Aecj>opMaI.\HH. OnpeAeJIeHbI HanpaBJIeHHlI nOJIlIpH3aI.\HH
AaHHoli BOJIHbI-BeKTOpa H3 cOBnaAeHHlI rJIaBHbIX ocell KBaAPHKH HHAeKca H KBaAPHKH nceBAOAecj>opMaI.\HH.
CKOpOCTH nOJIlIpH30BaHHOil. BOJIHbI H Jcj>cj>eKT ABollHoro npeJIOMJIeHHlI AeTaJIH3HpYIOTCli B cj>OTo-ynpyro­
rmaCTH'IHoil: cpeAe BTOPH'IHbIMH rnaBHbIMH nceBAOAecj>opMaI.\HlIMH.· B npeAeJIaX ynpyrocTH BblBeAeHHali
o6LQall cj>opMyJIa npHBOAHTCli K XOpOillO H3BecTHOil: cj>opMyJIe cj>OTo-ynpyrocTH. B CJIY'lae, Koua rnaBHbIe
OCH ynpyroll H nnacTH'IecKoli Aecj>opMaI.\HH HAeHTH'IHbI, Hailla o6LQall cj>opMYJIa npHBOAHTCli K cj>opMYJIe,
npeAJIOllCeHHoil. rpynnaMH: «I>HJIOH H Jl:lKeccon [I], nail.YMH H «I>paHKJl [3], H «I>YAlKH H TOKyoKa [4].


